Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents
نویسندگان
چکیده
Maleimides remain the reagents of choice for the preparation of therapeutic and imaging protein conjugates despite the known instability of the resulting products that undergo thiol-exchange reactions in vivo. Here we present the rational design of carbonylacrylic reagents for chemoselective cysteine bioconjugation. These reagents undergo rapid thiol Michael-addition under biocompatible conditions in stoichiometric amounts. When using carbonylacrylic reagents equipped with PEG or fluorophore moieties, this method enables access to protein and antibody conjugates precisely modified at pre-determined sites. Importantly, the conjugates formed are resistant to degradation in plasma and are biologically functional, as demonstrated by the selective imaging and detection of apoptotic and HER2+ cells, respectively. The straightforward preparation, stoichiometric use and exquisite cysteine selectivity of the carbonylacrylic reagents combined with the stability of the products and the availability of biologically relevant cysteine-tagged proteins make this method suitable for the routine preparation of chemically defined conjugates for in vivo applications.
منابع مشابه
Protein Modification, Bioconjugation, and Disulfide Bridging Using Bromomaleimides
The maleimide motif is widely used for the selective chemical modification of cysteine residues in proteins. Despite widespread utilization, there are some potential limitations, including the irreversible nature of the reaction and, hence, the modification and the number of attachment positions. We conceived of a new class of maleimide which would address some of these limitations and provide ...
متن کاملDisulfide bridge based PEGylation of proteins.
PEGylation is a clinically proven strategy for increasing the therapeutic efficacy of protein-based medicines. Our approach to site-specific PEGylation exploits the thiol selective chemistry of the two cysteine sulfur atoms from an accessible disulfide. It involves two key steps: (1) disulfide reduction to release the two cystine thiols, and (2) bis-alkylation to give a three-carbon bridge to w...
متن کاملProteomic Quantification and Site-Mapping of S-Nitrosylated Proteins Using Isobaric iodoTMT Reagents
S-Nitrosylation is a redox-based protein post-translational modification in response to nitric oxide signaling and is involved in a wide range of biological processes. Detection and quantification of protein S-nitrosylation have been challenging tasks due to instability and low abundance of the modification. Many studies have used mass spectrometry (MS)-based methods with different thiol-reacti...
متن کاملQuantitative Chemoproteomics for Site-Specific Analysis of Protein Alkylation by 4-Hydroxy-2-Nonenal in Cells
Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopic...
متن کاملChemo- and Regioselective Lysine Modification on Native Proteins
Site-selective chemical conjugation of synthetic molecules to proteins expands their functional and therapeutic capacity. Current protein modification methods, based on synthetic and biochemical technologies, can achieve site selectivity, but these techniques often require extensive sequence engineering or are restricted to the N- or C-terminus. Here we show the computer-assisted design of sulf...
متن کامل